BSc Physics Notes: Semester 5

Semester 5


 List of the Subjects 

CORE: Quantum Mechanics and Applications 

CORE: Solid State Physics 

DSE: Astronomy and Astrophysics




     (Credits: Theory-04, Practicals-02)

     Theory: 60 Lectures


     Topics Covered in Notes

Time dependent Schrodinger equation: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions;Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigen functions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle.                                                                                                                                                                     (10 Lectures)

Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigen functions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle.                                                                                              (12 Lectures)

General discussion of bound states in an arbitrary potential- continuity of wave
function, boundary condition and emergence of discrete energy levels; application to
one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method; Hermite polynomials; ground state, zero point energy & uncertainty principle.                                                                  (10 Lectures)

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in
spherical polar coordinates; separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wave functions from Frobenius method; shapes of the probability densities for ground and first excited states; Orbital angular momentum quantum numbers l and m; s, p,  
  (10 Lectures)

Atoms in Electric and Magnetic Fields: Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor’s Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Normal Zeeman Effect: Electron
Magnetic Moment and Magnetic Energy.                                                                                   (8 Lectures)

Many electron atoms: Pauli’s Exclusion Principle. Symmetric and Antisymmetric Wave Functions. Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Spin-orbit coupling in atoms-L-S and J-J couplings.

                                                               (8 Lectures)

Suggested Books in Syllabus:
  • A Text book of Quantum Mechanics, P.M. Mathews and K. Venkatesan, 2nd Ed., 2010, McGraw Hill.
  • Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
  • Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
  • Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge.
  • Quantum Mechanics, Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
  • Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education.

Click to download the Notes in Pdf Format


  • Class Notes 
  • Mordern Physics by R B Sinha
  • Quantum Mechanics by M C Jain
  • Introduction to Quantum Mechanics, D.J. Griffith
  • Concept of Mordern Physics Beiser
  • Quantum Mechanics, Robert Eisberg and Robert Resnick



(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

               Topics Covered in Notes

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis– Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg’s Law. Atomic and Geometrical Factor.                                                                                                 (12 Lectures)

Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit’s Law, Einstein and Debye theories of specific heat of solids. T3 law.                                                                  (10 Lectures)

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia– and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie’s law, Weiss’s Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.                                                                                                                                             (8 Lectures)

Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, TO modes.
                                                            (10 Lectures)

Ferroelectric Properties of Materials: Structural phase transition, Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop.                                                    (6 lectures)

Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect.
                                                              (8 Lectures)

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London’s Equation and Penetration Depth. Isotope effect. 
                                                               (6 Lectures)

 Suggested Books in Syllabus:

  • Introduction to Solid State Physics, Charles Kittel, 8th Edn., 2004, Wiley India Pvt. Ltd.
  • Elements of Solid State Physics, J.P. Srivastava, 2nd Edn., 2006, Prentice-Hall of India.
  • Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill.
  • Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning.
  • Solid-state Physics, H. Ibach and H. Luth, 2009, Springer.
  • Solid State Physics, Rita John, 2014, McGraw Hill
  • Solid State Physics, M.A. Wahab, 2011, Narosa Publications.

      Click to download the Notes in Pdf Format

Reference :
  • Class Notes
  • Solid State Physics by  Puri  and  Babbar
  • Elements of Solid State Physics by J P Srivashtav
  • Introduction to Solid State Physics by  Kittel
  • Solid State Physics by Wahab


3. PHYSICS-DSE: Astronomy and Astrophysics

(Credits: Theory-05, Tutorials-01)

Theory: 75 Lectures

Topics Covered in Notes

Astronomical Scales: Astronomical Distance, Mass and Time, Scales, Brightness, Radiant Flux and Luminosity, Measurement of Astronomical Quantities Astronomical Distances, Stellar Radii, Masses of Stars, Stellar Temperature. Basic concepts of positional astronomy: Celestial Sphere, Geometry of a Sphere, Spherical Triangle,Astronomical Coordinate Systems, Geographical Coordinate Systems, Horizon System, Equatorial System, Diurnal Motion of the Stars, Conversion of Coordinates. Measurement of Time, Sidereal Time, Apparent Solar Time, Mean Solar Time, Equation of Time, Calendar. Basic Parameters of Stars: Determination of Distance by Parallax Method; Brightness, Radiant Flux and Luminosity, Apparent and Absolute magnitude scale, Distance Modulus; Determination of Temperature and Radius of a star; Determination of Masses from Binary orbits; Stellar Spectral Classification, Hertzsprung-Russell Diagram.              
                                                               (24 Lectures)

Astronomical techniques: Basic Optical Definitions for Astronomy (Magnification Light Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space Telescopes, Detectors and Their Use with Telescopes (Types of Detectors, detection Limits with Telescopes). Physical principles: Gravitation in Astrophysics (Virial Theorem, Newton versus Einstein), Systems in Thermodynamic Equilibrium.           
                                                              (9 Lectures)

The sun (Solar Parameters, Solar Photosphere, Solar Atmosphere, Chromosphere. Corona, Solar Activity, Basics of Solar Magneto-hydrodynamics. Helioseismology). The solar family (Solar System: Facts and Figures, Origin of the Solar System: The Nebular Model, Tidal Forces and Planetary Rings, Extra-Solar Planets.Stellar spectra and classification Structure (Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram, Luminosity Classification) 
                                                              (11 Lectures)

The milky way: Basic Structure and Properties of the Milky Way, Nature of Rotation of the Milky Way (Differential Rotation of the Galaxy and Oort Constant, Rotation Curve of the Galaxy and the Dark Matter, Nature of the Spiral Arms), Stars and Star Clusters of the Milky Way, Properties of and around the Galactic Nucleus.
                                                              (14 Lectures)

Galaxies: Galaxy Morphology, Hubble’s Classification of Galaxies, Elliptical Galaxies (The Intrinsic Shapes of Elliptical, de Vaucouleurs Law, Stars and Gas). Spiral and Lenticular Galaxies (Bulges, Disks, Galactic Halo) The Milky Way Galaxy, Gas and Dust in the Galaxy, Spiral Arms.
                                                              (7 Lectures)

Large scale structure & expanding universe: Cosmic Distance Ladder (An Example from Terrestrial Physics, Distance Measurement using Cepheid Variables), Hubble’s Law (Distance- Velocity Relation), Clusters of Galaxies (Virial theorem and Dark Matter). 
                                                              (10 Lectures)

Suggested  Books in Syllabus:

  • Modern Astrophysics, B.W. Carroll & Ostlie, Addison-Wesley Publishing Co.
  • Introductory Astronomy and Astrophysics, M. Zeilik and S.A. Gregory, 4th
  • Fundamental of Astronomy (Fourth Edition), H. Karttunen et al. Springer
  • Baidyanath Basu, An introduction to Astrophysics, Second printing, Prentice -
  • Explorations: Introduction to Astronomy, Thomos Arny and Stephen Schneider.
  • Textbook of Astronomy and Astrophysics with elements of cosmology, V.B.

       Click to download the Notes in Pdf  Format

  • Class Notes
  • Astrophysics Course Material At  e-GyanKosh
  • Astrophysics for Physicists  by Arnab Rao Choudhari
  • Fundamental of Astronomy , H. Karttunen et al. Springer



(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures


Topics Covered in Notes

( The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.)

Linear Vector Spaces : Abstract Systems , Binary Operations and Relations. Introduction to Groups and Fields. Vector Spaces and Subspaces. Linear Independence and Dependence of Vectors. Basis and Dimensions of a Vector Space. Change of basis. Homomorphism and Isomorphism of Vector Spaces. Linear Transformations. Algebra of Linear Transformations. Nonsingular Transformations. Representation of Linear Transformations by Matrices.
                                                          (12 Lectures)

Matrices: Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. Upper-Triangular and Lower-Triangular Matrices. Transpose of a Matrix. Symmetric and Skew-Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-Singular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix. Inner Product. 
                                                           (8 Lectures)

Eigen-values and Eigenvectors. Cayley- Hamiliton Theorem. Diagonalization of Matrices. Solutions of Coupled Linear Ordinary Differential Equations. Functions of a Matrix.
                                                             (10 Lectures)

Cartesian Tensors: Transformation of Co-ordinates. Einstein’s Summation Convention. Relation between Direction Cosines. Tensors. Algebra of Tensors. Sum, Difference and Product of Two Tensors. Contraction. Quotient Law of Tensors. Symmetric and Anti-symmetric Tensors. Invariant Tensors : Kronecker and Alternating Tensors. Association of Antisymmetric Tensor of Order Two and Vectors. Vector Algebra and Calculus using Cartesian Tensors : Scalar and Vector Products, Scalar and Vector Triple  Products. Differentiation. Gradient, Divergence and Curl of Tensor Fields. Vector Identities.Tensorial Formulation of Analytical Solid Geometry : Equation of a Line. Angle Between Lines. Projection of a Line on another Line. Condition for Two Lines to be Coplanar. Foot of the Perpendicular from a Point on a Line. Rotation Tensor (No Derivation). Isotropic Tensors. Tensorial Character of Physical Quantities. Moment of Inertia Tensor. Stress and Strain Tensors : Symmetric Nature. Elasticity Tensor. Generalized Hooke’s Law. 
                                                                  (20 lectures)

General Tensor:Transformation of Co-ordinates. Minkowski Space. Contravariant & Covariant Vectors. Contravariant, Covariant and Mixed Tensors. Kronecker Delta and Permutation Tensors. Algebra of Tensors. Sum, Difference & Product of Two Tensors. Contraction. Quotient Law of Tensors. Symmetric and Anti-symmetric Tensors. Metric Tensor.    
                                                               (10 Lectures)

Suggested  Books  in Syllabus:
  • Mathematical Tools for Physics, James Nearing, 2010, Dover Publications
  • Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber and F.E.Harris,1970, Elsevier.
  • Modern Mathematical Methods for Physicists and Engineers, C.D. Cantrell, 2011
  • Introduction to Matrices & Linear Transformations, D.T.Finkbeiner,1978, Dover Pub.
  • Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole

      Click to download the Notes in Pdf                                      Format

  • Class Notes
  • Linear Algebra and Tensors by M C Jain
  • Vector Analysis and Introduction to Tensor Analysis  Schaum's Outlines
  • Cartesian Tensors by Jaffreys

with regards,

By Bsc Physics Notes

Vaibhav Tyagi
Personal Homepage : Click Here
PhD in Atmospheric Sciences
Indian Institute of Technology Indore, MP
M.Sc. Physics (2020-2022)
Indian Institute of Technology
Palakkad , Kerala 

B.Sc. Honours Physics (2017-2020)
Deen Dyal Upadhyaya College
University of Delhi


  1. Such a great work . thankyou sooo much

  2. Sir, pleas upload Nuclear And particke physics notes also

    1. Actually I opted Astrophysics as my DSE in 5th Semester so dont have notes of Nuclear and Particle Physics, but still trying to arrange notes.
      Will upload as soon as possible.

    2. Pls upload it as soon as possible

    3. Yes ,plss upload it as soon as possible

  3. great work keep going ... this turned out to be a silver line in this covid stricken hard time ... thank you so much

  4. Thank u so much to the one who upload it.... Bhai to ka bhla kra h aapne!

  5. Sir please upload mathematical physics1 notes from 1semester.

  6. please provide with practical of solid state sem5

  7. Please provide notes for nuclear physics

  8. Thank you so much for these notes. They are helping a lot. If possible may you please arrange notes of Physics of Devices and Communication DSE Course? Thanks again.

  9. Sir please provide bsc vth sem Solid state physics practical notes

  10. which university syllabus is this sir????

  11. these notes are just amazing really thanks for the notes

  12. Could you please arrange notes for Nuclear and particle physics?

  13. Quantum mechanics notes please

  14. Can i get notes for experimental techniques (DSE) & Physics of devices and instruments (DSE)

  15. Please available nuclear and particl physics notes and physics of devices and instruments

  16. Please upload quantum mechanics previous year questions with solutions

  17. Sir u r asking for money I have no money