BSc Physics Notes: Semester 4

Semester 4

List of the Subjects 





PHYSICS-C IX: ELEMENTS OF  MODERN PHYSICS (Credits: Theory-04, Practicals-02)       
Theory:  60 Lectures 


Topics Covered in the Notes 

Planck’s  quantum,  Planck’s  constant  and  light  as  a  collection  of  photons;  Blackbody Radiation:  Quantum  theory  of  Light;  Photo-electric  effect  and  Compton  scattering.  De Broglie  wavelength  and  matter  waves;  Davisson-Germer  experiment.  Wave  description of  particles  by  wave  packets.  Group  and  Phase  velocities  and  relation  b/w them. Two-Slit experiment with electrons. Probability. Wave amplitude and  wave functions. 

                                                           (14 Lectures) 

Position  measurement-  gamma  ray  microscope  thought  experiment;  Wave-particle duality, Heisenberg uncertainty  principle  (Uncertainty  relations  involving  Canonical pair of  variables):  Derivation  from  Wave  Packets  impossibility  of  a  particle  following  a trajectory;  Estimating  minimum  energy  of  a  confined  particle  using  uncertainty principle;  Energy-time  uncertainty  principle-  application  to  virtual  particles  and  range  of an interaction.           
                                                             (5  Lectures)    

Two  slit  interference  experiment  with  photons,  atoms  and  particles;  linear  superposition principle  as  a  consequence;  Matter  waves  and  wave  amplitude;  Schrodinger  equation  for non-relativistic  particles;  Momentum  and  Energy  operators;  stationary  states;  physical   inter-pretation  of  a  wave  function,  probabilities  and  normalization;  Probability  and probability  current densities in one dimension.      
                                                         (10 Lectures)      

One  dimensional  infinitely  rigid  box-  energy  eigenvalues  and  eigenfunctions, normalization;  Quantum  dot  as  example;  Quantum  mechanical  scattering  and  tunnelling in one dimension-across  a step potential &  rectangular potential barrier.   
                                                         (10 Lectures)      

Size and  structure of atomic  nucleus and  its  relation with  atomic weight;  Impossibility  of an  electron  being  in  the  nucleus  as  a  consequence  of  the  uncertainty  principle.  Nature  of nuclear  force,  NZ  graph,  Liquid  Drop  model:  semi-empirical  mass  formula  and  binding energy.           

                                                        (6 Lectures) 

Radioactivity:  stability  of the  nucleus;  Law  of  radioactive decay;  Mean  life  and half-life; Alpha  decay;  Beta  decay-  energy  released,  spectrum  and  Pauli's  prediction  of  neutrino; Gamma  ray  emission,  energy-momentum  conservation:  electron-positron  pair  creation by  gamma photons in the vicinity  of a nucleus.        
                                                         (8  Lectures) 

Fission  and  fusion-  mass  deficit,  relativity  and  generation  of  energy;  Fission-nature of fragments  and  emission  of  neutrons.  Fusion  and  thermo-nuclear  reactions  driving  stellar energy  (brief qualitative discussions).     
                                                           (3  Lectures)   

Lasers:  Metastable  states.  Spontaneous  and  Stimulated  emissions.  Optical  Pumping  and Population  Inversion.  Basic lasing.          
                                                           (4 Lectures) 

Reference Books: 
  • Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill. 
  • Introduction to Modern  Physics, Rich  Meyer, Kennard, Coop, 2002, Tata  McGraw Hill  
  • Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education. 
  • Physics for  scientists  and  Engineers  with  Modern Physics,  Jewett  and  Serway,  2010, Cengage  Learning. 
  • Modern Physics, G.Kaur and  G.R. Pickrell, 2014, McGraw Hill 
  • Theory  and  Problems  of  Modern  Physics,  Schaum`s  outline,  R.  Gautreau  and  W. Savin, 2nd  Edn,  Tata McGraw-Hill  Publishing Co. Ltd. 
  • Quantum  Physics,  Berkeley  Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.
  • Six  Ideas  that Shaped Physics:Particle Behave like Waves, T.A.Moore,2003, McGraw Hill.

Click to download the Notes in Pdf Format


  • Class Notes
  • Introduction to Mordern Physics by R B Sinha.
  • Concept of Mordern Physics by Beiser.



(Credits: Theory-04, Practicals-02)       
Theory:  60 Lectures 


Topics Covered in the Notes

Semiconductor  Diodes:  P and  N  type  semi-conductors.  Energy  Level  Diagram. Conductivity  and  Mobility,  Concept  of  Drift  velocity.PN  Junction  Fabrication  (Simple Idea).  Barrier  Formation  in  PN  Junction  Diode.  Derivation  for  Barrier  Potential,  Barrier Width  and  Current  for  abrupt  Junction.  Current  Flow  Mechanism  in  Forward  and Reverse  Biased Diode.        
                                                               (9  Lectures) 

Two-terminal  Devices  and  their  Applications:  (1)  Rectifier  Diode:  Half-wave Rectifiers.  Centre-tapped & Bridge  Full-wave Rectifiers,  Calculation  of  Ripple  Factor and  Rectification  Efficiency,  C-filter,  (2)  Zener  Diode  and  Voltage  Regulation. Principle,  structure  and  characteristics  of  (1)  LED,  (2)  Photodiode  and  (3)Solar  Cell, Qualitative idea  of Schottky  diode and Tunnel diode.   
                                                                 (7  Lectures) 

Bipolar  Junction  transistors:  n-p-n  and  p-n-p  Transistors.  I-V  characteristics  of  CB and  CE  Configurations.  Active,  Cutoff  and  Saturation  Regions.  Current  gains  α  and  β. Relations  between  α  and  β.  Load  Line  analysis  of  Transistors.  DC  Load  line  and  Qpoint. Physical Mechanism  of Current Flow.       
                                                                (6 Lectures) 

Amplifiers:  Transistor  Biasing  and  Stabilization  Circuits.  Fixed  Bias  and  Voltage Divider Bias. Transistor  as 2-port Network.h-parameter Equivalent Circuit. Analysis of  a single-stage  CE  amplifier  using  Hybrid  Model.  Input  and  Output  Impedance.  Current, Voltage and Power Gains. Classification of Class A, B &  C Amplifiers.  
                                                              (10 Lectures) 

Coupled Amplifier:  Two stage  RC-coupled amplifier and its frequency  response. 
                                                              (4 Lectures)

Feedback  in  Amplifiers:  Positive  and  Negative  Feedback.  Effect  of  negative  feedback on Input  Impedance, Output  Impedance, Gain, Stability, Distortion and Noise.  
                                                               (4 Lectures) 

Sinusoidal Oscillators:  Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency.Hartley  &  Colpitts oscillators.     
                                                              (4 Lectures) 

Operational  Amplifiers  (Black  Box  approach):  Characteristics  of  an  Ideal  and Practical  Op-Amp.  (IC  741)  Open-loop  and  Closed-loop  Gain.  Frequency  Response. CMRR. Slew Rate and concept of Virtual ground.       
                                                               (4 Lectures) 

Applications  of  Op-Amps:  (1)  Inverting  and  non-inverting  amplifiers,  (2)  Adder,  (3) Subtractor, (4)  Differentiator, (5)  Integrator, (6)  Log  amplifier, (7)  Comparator and    Zero crossing  detector (8)  Wein bridge oscillator.        (9 Lectures) Conversion:  D/A  Resistive  networks  (Weighted  and  R-2R  Ladder).  Accuracy  and Resolution.           
                                                                (3 Lectures) 

Reference  Books: 
  • Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill. 
  • Electronics: Fundamentals and Applications, J.D. Ryder, 2004,  Prentice Hall. 
  • Solid State Electronic Devices, B.G.Streetman  &  S.K.Banerjee, 6th  Edn.,2009, PHI  Learning 
  • Electronic  Devices  & circuits, S.Salivahanan  &  N.S.Kumar, 3rd  Ed., 2012, Tata Mc-Graw Hill 
  • OP-Amps and Linear  Integrated Circuit, R. A. Gayakwad, 4th  edition, 2000, Prentice Hall 
  • Microelectronic  circuits,  A.S.  Sedra,  K.C.  Smith,  A.N.  Chandorkar,  2014,  6th  Edn.,  Oxford University  Press. 
  • Semiconductor Devices: Physics and Technology,  S.M. Sze, 2nd  Ed., 2002,  Wiley  India 
  • Microelectronic Circuits, M.H.  Rashid,  2nd  Edition,  Cengage  Learning 
  • Microelectronic Devices  & Circuits, David A.Bell, 5th  Edn.,2015, Oxford University  Press

Click to download the Notes in Pdf Format

  • Class Notes 
  • Analog by Kakani
  • Opamp by Chaudhary 


GE- : Numerical Methods  
Total Marks: 150 
Examination: 3 Hrs.  


Course Objectives: The goal of this paper is to acquaint students for the study of certain algorithms that uses numerical approximation for the problems of mathematical analysis. Also, the use of Computer Algebra Systems (CAS) by which the intractable problems can be solved both numerically and analytically.  

Course Learning Outcomes: After completion of this course, students will be able to:  
i) Find the consequences of finite precision and the inherent limits of numerical methods.  
ii) Appropriate numerical methods to solve algebraic and transcendental equations.  
iii) How to solve first order initial value problems of ODE’s numerically using Euler methods.  

Topics Covered in the Notes

Course Contents:  
Unit 1: Errors and Roots of Transcendental and Polynomial Equations .Floating point representation and computer arithmetic, Significant digits; Errors: Roundoff error, Local truncation error, Global truncation error; Order of a method, Convergence and terminal conditions; Bisection method, Secant method, Regula-Falsi method, Newton-Raphson method.  
                                                        (Lectures: 16)

Unit 2:  Algebraic Linear Systems and Interpolation  Gaussian elimination method (with row pivoting), Gauss-Jordan method; Iterative methods: Jacobi method, Gauss-Seidel method; Interpolation: Lagrange form, Newton form, Finite difference operators, Gregory-Newton forward and backward difference interpolations, Piecewise polynomial interpolation (Linear and Quadratic).            
                                                      (Lectures: 20)     

Unit 3: Numerical Differentiation, Integration and ODE, Numerical differentiation: First and second order derivatives; Numerical integration: Trapezoid rule, Simpson’s rule; Extrapolation methods: Richardson extrapolation, Romberg integration; Ordinary differential equation: Euler’s method, Modified Euler’s methods (Heun and Mid-point).                                                            (Lectures: 20)   

References Books in Syllabus :
  • Chapra, Steven C. (2018). Applied Numerical Methods with MATLAB for Engineers and Scientists (4th ed.). McGraw-Hill Education.
  • Fausett, Laurene V. (2009). Applied Numerical Analysis Using MATLAB.  Pearson. India. 
  • Jain, M. K., Iyengar, S. R. K., & Jain R. K. (2012). Numerical Methods for Scientific and Engineering Computation (6th ed.). New Age International Publishers. Delhi. 

Click to download the Notes in Pdf Format


  • Class Notes
  • Numerical Methods by Jain , Iyengar & Jain
  • YouTube  Jaipal Higher Mathematics. 

 with regards,

By Bsc Physics Notes

Vaibhav Tyagi
Personal Homepage : Click Here
PhD in Atmospheric Sciences
Indian Institute of Technology Indore, MP
M.Sc. Physics (2020-2022)
Indian Institute of Technology
Palakkad , Kerala 

B.Sc. Honours Physics (2017-2020)
Deen Dyal Upadhyaya College
University of Delhi


  1. Pdf for notes of semiconductor is not visible

    1. Thanks to bring it into my knowledge.
      I have Updated it . You now can easily access to the notes pdf of semiconductor.

  2. Sem 4 MP

  3. Is the notes of mathematical physics III available here?

  4. Please provide notes for elements of analysis sem4

  5. pls upload mp pdf

  6. Please chk you email

  7. Please upload pdf of mp3 notes