BSc Physics Notes: Semester 6

Semester 6

 List of the Subjects 



CORE: Electromagnetic Theory 


CORE: Statistical Mechanics 


DSE: Advanced Mathematical  Physics-II   


DSE: Verilog  and  FPGA based system design


DSE: Communication System


DSE: Classical Dynamics


______________________________________________________________________________

1. PHYSICS XIII: ELECTROMAGNETIC THEORY

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures
__________________________________________________



     Topics Covered in Notes




Maxwell Equations: Review of Maxwell’s equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. L Boundary  Conditions at Interface between Different Media. Wave Equations. Plane Waves in  Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density. Momentum Density and Angular Momentum Density.

                                                             (12 Lectures)



EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and   isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency , refractive index, skin depth, application to propagation through ionosphere.

                                                            (10 Lectures)



EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric  media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients.Total internal   reflection, evanescent waves. Metallic reflection (normal Incidence) 

                                                         (10 Lectures)



Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel’s Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and  Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light 

                                                               (12 Lectures)



Rotatory Polarization: Optical Rotation. Biot’s Laws for Rotatory Polarization .Fresnel’s  Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel’s theory. Specific rotation. Laurent’s half-shade polarimeter.

                                                            (5 Lectures)



Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of

continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission. 

                                                             (8 Lectures)



Optical Fibres: Numerical Aperture. Step and Graded Indices (Definitions Only).

Single and Multiple Mode Fibres.

                                                              (3 Lectures)








Suggested Books in Syllabus:

  • Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
  • Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
  • Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
  • Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning.
  • Engineering Electromagnetic, Willian H. Hayt, 8th Edition, 2012, McGraw Hill.
  • Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
  • Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2015,
  • Cambridge University Press








Click to download the Notes in Pdf Format












References:

  • Class Notes 
  • Electrodynamics by Satya Prakash.
  • Elements of Electromagnetics, M.N.O. Sadiku (for Problems)







_________________________________________________

PHYSICS-C XIV: STATISTICAL MECHANICS

(Credits: Theory-04, Practicals-02)


Theory: 60 Lectures

_______________________________________________



Topics Covered in Notes




Classical Statistics: Macrostate and Microstate, Phase Space, Elementary Concept of Ensemble, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution
Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof)– Applications to Specific Heat and its Limitations, Thermodynamic
Functions of a Two-Energy Levels System, Negative Temperature.

                                                             (18 Lectures)



Classical Theory of Radiation: Properties of Thermal Radiation. Blackbody Radiation.
Pure temperature dependence. Radiation Pressure. Kirchhoff’s law. Stefan-Boltzmann
law: Thermodynamic proof. Wien’s Displacement law. Wien’s Distribution Law. Saha’s
Ionization Formula. Rayleigh-Jean’s Law. Ultraviolet Catastrophe. 
                                                                (9 Lectures)



Quantum Theory of Radiation: Spectral Distribution of Black Body Radiation. Planck’s Quantum Postulates. Planck’s Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien’s Distribution Law, (2) Rayleigh-Jeans Law, (3)
Stefan-Boltzmann Law, (4) Wien’s Displacement law from Planck’s law. 
                                                            (5 Lectures)



Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly
Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas.Bose derivation of Planck’s law. 
                                                          (13 Lectures)



Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit. 
                                                       (15 Lectures)






 Suggested Books in Syllabus:
  • Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford
  • Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill
  • Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W
  • Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
  • An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press





 




Click to download the Notes in Pdf Format











References:

  • Class Notes 
  • Statistical Mechanics by Satya Prakash.
  • Statistical Mechanics by Geeta Senon.
  • Statistical Mechanics by S . Garg , Bansal and Ghosh.
  • Statistical Mechanics by R K Patharia.










__________________________________________________

PHYSICS-DSE: Advanced Mathematical Physics –II

(Credits: Theory-05, Tutorial-01)

Theory: 75 Lectures

___________________________________________________



Topics Covered in Notes




Calculus of Variations: Variable Calculus: Variational Principle, Euler’s Equation and its Application to Simple Problems. Geodesics. Concept of Lagrangian. Generalized co-ordinates. Definition of canonical moment, Euler-Lagrange’s Equations of Motion and its Applications to Simple Problems (e.g., Simple Pendulum and One dimensional harmonic oscillator). Definition of Canonical Momenta. Canonical Pair of Variables. Definition of Generalized Force: Definition of Hamiltonian (Legendre Transformation). Hamilton’s Principle. Poisson Brackets and their properties. Lagrange Brackets and their properties.
                                                             (25 Lectures)



Group Theory: Review of sets, Mapping and Binary Operations, Relation, Types of Relations. Groups: Elementary properties of groups, uniqueness of solution, Subgroup, Centre of  group, Co-sets of a subgroup, cyclic group, Permutation /Transformation. Homomorphism and Isomorphism of group. Normal and conjugate subgroups Completeness and Kernel. Some special groups with operators. Matrix Representations: Reducible and Irreducible. 
                                                         (25 Lectures)






Advanced Probability Theory: Fundamental Probability Theorems. Conditional Probability, Bayes’ Theorem, Repeated Trials, Binomial and Multinomial expansions. Random Variables and probability distributions, Expectation and Variance, Special Probability distributions: The binomial distribution, The poisson distribution, Continuous distribution: The Gaussian (or normal) distribution, The principle of least squares.

                                                          (25 Lectures)






Suggested Books in Syllabus:
  • Mathematical Methods for Physicists: Weber and Arfken, 2005, Academic Press.
  • Mathematical Methods for Physicists: A Concise Introduction: Tai L. Chow,2000, Cambridge Univ. Press.
  • Elements of Group Theory for Physicists by A. W. Joshi, 1997, John Wiley.
  • Group Theory and its Applications to Physical Problems by Morton Hamermesh,1989, Dover
  • Introduction to Mathematical Physics: Methods & Concepts: Chun Wa Wong, 2012, Oxford University Press
  • Introduction to Mathematical Probability, J. V. Uspensky, 1937, Mc Graw-Hill.










Click to download the Notes in Pdf Format








References:

  • Class Notes 
  • Mathematical Physics by Satya Prakash.
  • Mathematical Physics by B D Gupta (for Group Theory)
  • Probablity and Statistics by Spiegel
  • Mathematical Physics by H K Das












_________________________________________________

PHYSICS-DSE: VERILOG AND FPGA BASED SYSTEM DESIGN

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

__________________________________________________




Topics Covered in Notes



Digital logic design flow. Review of combinational circuits. Combinational building blocks: multiplexors, demultiplexers, decoders, encoders and adder circuits. Review of sequential circuit elements: flip-flop, latch and register. Finite state machines: Mealy and Moore. Other sequential circuits: shift registers and counters. FSMD (Finite State Machine with Datapath): design and analysis. Microprogrammed control. Memory basics and timing. Programmable Logic devices. 

                                                               (20 lectures)


Evolution of Programmable logic devices. PAL, PLA and GAL. CPLD and FPGA
architectures. Placement and routing. Logic cell structure, Programmable interconnects, Logic blocks and I/O Ports. Clock distribution in FPGA. Timing issues in FPGA design.Boundary scan. 

                                                           (20 lectures)



Verilog HDL: Introduction to HDL. Verilog primitive operators and structural Verilog
Behavioral Verilog. Design verification. Modeling of combinational and sequential
circuits (including FSM and FSMD) with Verilog Design examples in Verilog.
                                                              (20 lectures)






Suggested  Books in Syllabus:
  • LizyKurien and Charles Roth. Principles of Digital Systems Design and VHDL.Cengage Publishing. ISBN-13: 978-8131505748
  • Palnitkar, Samir, Verilog HDL. Pearson Education; Second edition (2003).
  • Ming-Bo Lin. Digital System Designs and Practices: Using Verilog HDL and FPGAs. Wiley India Pvt Ltd. ISBN-13: 978-8126536948
  • Zainalabedin Navabi. Verilog Digital System Design. TMH; 2ndedition. ISBN-13: 978-0070252219
  • Wayne Wolf. FPGA Based System Design. Pearson Education.
  • S. K. Mitra, Digital Signal processing, McGraw Hill, 1998
  • VLSI design, Debaprasad Das, 2nd Edition, 2015, Oxford University Press.
  • D.J. Laja and S. Sapatnekar, Designing Digital Computer Systems with Verilog.













Click to download the Notes in Pdf Format








References:

  • Class Notes 
  • Palnitkar, Samir, Verilog HDL. Pearson Education
  • Intrenet









_________________________________________________

PHYSICS- DSE 1C: COMMUNICATION SYSTEM

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

__________________________________________________



Topics Covered in Notes



Electronic communication: Introduction to communication – means and modes. Need
for modulation. Block diagram of an electronic communication system. Brief idea of frequency allocation for radio communication system in India(TRAI). Electromagnetic communication spectrum, band designations and usage. Channels and base-band signals. Concept of Noise, signal-to-noise (S/N) ratio.

                                                        (8 Lectures)


Analog Modulation: Amplitude Modulation, modulation index and frequency spectrum. Generation of AM (Emitter Modulation), Amplitude Demodulation (diode detector), Concept of Single side band generation and detection. Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, equivalenc between FM and PM, Generation of FM using VCO, FM detector (slope detector), Qualitative idea of Super heterodyne receiver
                                                            (12 Lectures)



Analog Pulse Modulation: Channel capacity, Sampling theorem, Basic Principles- PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing.
                                                         (9 Lectures)



Digital Pulse Modulation: Need for digital transmission, Pulse Code Modulation,
Digital Carrier Modulation Techniques, Sampling, Quantization and Encoding. Concept of Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Binary Phase Shift Keying (BPSK). 
                                                       (10 Lectures)



Introduction to Communication and Navigation systems: Satellite Communication– Introduction, need, Geosynchronous satellite orbits geostationary satellite advantages of geostationary satellites. Satellite visibility,
transponders (C - Band), path loss, ground station, simplified block diagram of earth
station. Uplink and downlink.                                          
                                                        (10 Lectures)



Mobile Telephony System – Basic concept of mobile communication, frequency band used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies,simplified block diagram of mobile phone handset, 2G, 3G and 4G concepts (qualitative only). 
                                                        (10 Lectures)



GPS navigation system (qualitative idea only)                                                          (1 Lecture)







Suggested Books in Syllabus:

  • Electronic Communications, D. Roddy and J. Coolen, Pearson Education India.

  • Advanced Electronics Communication Systems- Tomasi, 6th edition, Prentice Hall.

  • Modern Digital and Analog Communication Systems, B.P. Lathi, 4th Edition, 2011,

  • Electronic Communication systems, G. Kennedy, 3rd Edn., 1999, Tata McGraw Hill.

  • Principles of Electronic communication systems – Frenzel, 3rd edition, McGraw Hill 

  • Communication Systems, S. Haykin, 2006, Wiley India

  • Electronic Communication system, Blake, Cengage, 5th edition.

  • Wireless communications, Andrea Goldsmith, 2015, Cambridge University Press.












Click to download the Notes in Pdf Format








Note ***

  • These notes are for reference purpose . 










 

_________________________________________________

PHYSICS- DSE: CLASSICAL DYNAMICS 

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

__________________________________________________



Topics Covered in Notes



The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.  Classical Mechanics of Point Particles: Review of Newtonian Mechanics; Application  to the motion of a charge particle in external electric and magnetic fields- motion in 
uniform electric field, magnetic field- gyroradius and gyrofrequency, motion in crossed  electric and magnetic fields. Generalized coordinates and velocities, Hamilton’s  principle, Lagrangian and the Euler-Lagrange equations, one-dimensional examples of the Euler-Lagrange equations one dimensional Simple Harmonic Oscillations and 
falling body in uniform gravity; applications to simple systems such as coupled  oscillators Canonical momenta & Hamiltonian. Hamilton's equations of motion.  Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton’s equation for  Simple Harmonic Oscillations; particle in a central force field- conservation of angular 
momentum and energy. 
                                                         (22 Lectures)

Small Amplitude Oscillations: Minima of potential energy and points of stable  equilibrium, expansion of the potential energy around a minimum, small amplitude  oscillations about the minimum, normal modes of oscillations example of N identical 
masses connected in a linear fashion to (N -1) - identical springs. 
                                                           (10 Lectures)

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz  Transformations. Minkowski space. The invariant interval, light cone and world lines.  Space-time diagrams. Time-dilation, length contraction and twin paradox. Four-vectors:  space-like, time-like and light-like. Four-velocity and acceleration. Metric and  alternating tensors. Four-momentum and energy-momentum relation. Doppler effect  from a four-vector perspective. Concept of four-force. Conservation of four-momentum.  Relativistic kinematics. Application to two-body decay of an unstable particle.
                                                          (33 Lectures)

Fluid Dynamics: Density d and pressure P in a fluid, an element of fluid and its  velocity, continuity equation and mass conservation, stream-lined motion, laminar flow,  Poiseuille’s equation for flow of a liquid through a pipe, Navier-Stokes equation, 
qualitative description of turbulence, Reynolds number.                                           (10 Lectures)





Suggested  Books in syllabus:
  • Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rdEdn. 2002, Pearson Education.
  • Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
  • Classical Electrodynamics, J.D. Jackson, 3rd Edn., 1998, Wiley.
  • The Classical Theory of Fields, L.D Landau, E.M Lifshitz, 4th Edn., 2003, Elsevier.
  • Classical Mechanics, P.S. Joag, N.C. Rana, 1st Edn., McGraw Hall.
  • Classical Mechanics, R. Douglas Gregory, 2015, Cambridge University Press.
  • Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press






Click to download the Notes in Pdf Format






    






Reference 

  • These notes of classical Dynamics are not mine , I have taken it from some trusted source.  (According to the syllabus prescribed)






 with regards,

By Bsc Physics Notes

Vaibhav Tyagi
Personal Homepage : Click Here
PhD in Atmospheric Sciences
Indian Institute of Technology Indore, MP
M.Sc. Physics (2020-2022)
Indian Institute of Technology
Palakkad , Kerala 

B.Sc. Honours Physics (2017-2020)
Deen Dyal Upadhyaya College
University of Delhi

10 comments:

  1. please post notes for classical dynamics.

    ReplyDelete
  2. thankyou so much for these notes.

    ReplyDelete
  3. Thank you so much for this notes.

    ReplyDelete
  4. Sir, please post notes for Nanotechnology and application.

    ReplyDelete
  5. Please try to upload "Nuclear and Particle Physics " notes

    ReplyDelete
  6. Please upload the notes of "NanoMaterial and it's applications"6th semester DSE subject.

    ReplyDelete
  7. where is the classical dynamics notes?

    ReplyDelete
  8. Astronomy and Astrophysics notes

    ReplyDelete